Singular Regularization of Operator Equations in L1 Spaces via Fractional Differential Equations
نویسندگان
چکیده
An abstract causal operator equation y = Ay defined on a space of the form L1([0, τ ], X), with X a Banach space, is regularized by the fractional differential equation ε(D 0 yε)(t) = −yε(t) + (Ayε)(t), t ∈ [0, τ ], where Dα 0 denotes the (left) Riemann-Liouville derivative of order α ∈ (0, 1). The main procedure lies on properties of the Mittag-Leffler function combined with some facts from convolution theory. Our results complete relative ones that have appeared in the literature; see, e.g. [5] in which regularization via ordinary differential equations is used.
منابع مشابه
FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES
In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملInterval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کامل